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Unsupervised temporal action localization in untrimmed videos is a challenging and open issue. 
Existing works focus on the “clustering + localization” framework for unsupervised temporal 
action localization. However, it heavily relies on features used for clustering and localization, e.g., 
features implying potential background information would degrade the localization performance. 
To address this problem, we propose a novel Action-positive Separation Learning (APSL) method. 
APSL follows a novel “feature separation + clustering + localization” iterative procedure. First, 
we introduce a novel feature separation learning (FSL) module. FSL employs separation learning 
to identify action and background features in a video, and then refines and removes potential 
action-negative and background-negative features (hard-to-locate) from the identified features 
employing contrastive learning, thus obtaining action-positive features (easy-to-locate). Next, in 
“clustering” step, we apply clustering to the separated action-positive features to obtain action 
pseudo-labels. In “localization” step, with action pseudo-labels and action-positive features, we 
employ a temporal action localization module to locate action instance regions, in turn, improving 
the performance of clustering and FSL. The three steps learn iteratively and reinforce each 
other during training. Comprehensive evaluations conducted on the THUMOS’14 and ActivityNet 
v1.2 datasets demonstrate that our method outperforms cutting-edge weakly supervised and 
unsupervised methods, obtaining state-of-the-art performance.

1. Introduction

Video temporal action localization is a challenging and interesting research direction in computer vision. It has generated a great 
deal of enthusiasm in recent years. The goal of video temporal action localization is to determine the exact start and end time of each 
action instance from a long, untrimmed video. Video temporal action localization has a variety of potential real-life applications, 
including video summarization, video highlight detection, and surgical skill assessment among others [1–4].

For video temporal action localization, most of the existing work focuses on fully and weakly supervised learning methods, and 
remarkable progress has been made [5–7]. However, these methods are heavily dependent on a large amount of training data with 
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Fig. 1. The motivation of our method. (a) Definition of action-positive, background-positive, action-negative and background-negative features in a video. Our method 
attempts to extract the action-positive features for robust temporal action localization via joint separation and contrastive learning. (b) and (c) show the frameworks 
and localized results of TCAM and our method, respectively. The red dashed box in (b) shows the part where TCAM locates the error. Compared to the TCAM, our 
APSL follows a novel “feature separation + clustering + localization” iterative learning procedure. During the procedure, the more action-positive features are used 
for clustering and localization, the more accurate action localization can be obtained, meanwhile, the feature separation is improved.

accurate annotation information. For example, the fully supervised methods require very precise frame-level instance annotation 
information (i.e., start timestamps and end timestamps for each action instance), which is difficult, burdensome, and extremely 
costly to annotate [8]. Although the weakly supervised methods do not require frame-level action region annotation, they still 
require video-level action category labels, and action category annotation for large amounts of untrimmed video is also very difficult 
and expensive [8].

Increasing number of recent research is focusing on the task of unsupervised temporal action localization. Recently, Gong 
et al. [9] proposed Temporal Co-Attention Models (TCAM) for unsupervised video temporal action localization. TCAM first used 
a clustering algorithm to group videos into 𝐶 classes, and then used the video-level features to locate action instances and update 
the action pseudo-labels of action instances via attention learning. TCAM proposed a good framework for unsupervised temporal 
action localization. However, during the iterative learning procedure, we observe that the temporal action localization can be heavily 
affected by the video-level feature extraction when much negative information, such as background information is used for clustering 
(Fig. 1 (a)), thereby degrading the localization results. Fig. 1 (b) shows an intuitive example of the affected localization results, where 
the red dashed box indicates an error result located by TCAM.

To address the aforementioned problem in TCAM, we propose the Action-positive Separation Learning (APSL) method for 
unsupervised video action localization. The main advances and differences between our method and TCAM are shown in Fig. 1. 
Fig. 1 (a) shows the classification of the four types of features in videos (i.e., action-positive, action-negative, background-positive, 
and background-negative) by APSL, and Figs. 1 (b) and (c) illustrate the frameworks of the TCAM and APSL for the unsupervised 
task, respectively. Compared with TCAM, our APSL uses a new unsupervised learning framework and introduces novel learning 
mechanisms for more salient action representation. As shown in Figs. 1 (a) and (c), the action-positive and background-positive 
features correspond to features that are easy-to-locate away from the boundaries and can be first separated by the APSL, whereas 
the action-negative and background-negative features are hard-to-locate features that are in the boundary region between action 
and background and are then compared by APSL to keep them away. Instead of using the video-based spatio-temporal features in 
TCAM, APSL first separates more salient action-positive features via a novel feature separation learning (FSL) module. With the 
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help of effective action-positive feature separation, APSL clusters the easy-to-locate features that contribute most to temporal action 
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localization, while localizing the action regions that contribute most to clustering and feature separation. Therefore, different from 
the two-stage learning in TCAM, the three steps of APSL can be learned iteratively in an end-to-end and mutually reinforcing manner. 
In summary, the major contributions of this paper are summarized as follows:

(1) We propose the novel APSL method for unsupervised temporal action localization without any action annotations. The APSL 
follows the “feature separation + clustering + localization” iterative procedure and reinforces each other during training.

(2) We propose a plug-and-play FSL module to acquire the more salient action-positive features by introducing the 
action-background separation loss and negative contrast loss. The former is used to separate the action features from the background 
features, and the latter further refines and removes the potentially action-negative and background-negative information. Both 
learning mechanisms pinpoint the precise video-level action categories and temporal-level action regions.

(3) Extensive experiments on the THUMOS’14 and ActivityNet v1.2 datasets demonstrate the effectiveness and robustness of our 
method in both unsupervised and weakly supervised tasks.

2. Related work

2.1. Fully supervised action localization

Fully supervised temporal action localization locates and classifies the time intervals of action occurrences in large untrimmed 
videos that use frame-level annotations. Nowadays, most work can be divided into two types, namely, one-stage and two-stage 
methods. One-stage methods can predict the location as well as the action classes simultaneously. For example, Long et al. [10]

proposed GTAN with Gaussian kernels to implement one-stage temporal action localization. Recently, Xu et al. [5] applied graph 
convolutional neural networks for one-stage action localization. The two-stage methods generate action proposals first and then 
classify them, and finally do the regression with time bounds. Earlier methods for generating proposals used the sliding window 
technique [11], whereas more recent models combined reliable start and end frames of actions [12]. Although the previous models 
have achieved great performance, their scalability and utility in the actual world are limited by the fully supervised setup [13,14].

2.2. Weakly supervised action localization

Weakly supervised learning-based methods only require video-level annotation to locate the action instances in videos, and 
are mainly classified into metric learning-based, erasure-based, multi-branching and multi-attention architecture-based approaches. 
STPN [15] and AutoLoc [16] pioneered the method for localizing action instances by setting class activation sequence thresholds, and 
most subsequent techniques have been followed. W-TALC [17] used metric learning to push features of the same action to be closer 
to each other than features of distinct analogs. Hide and Seek [18] attempted to extend the region of distinction by randomly hiding 
patches or suppressing dominant responses. To discover complete action occurrences, HAM-Net [19] used mixed attention weight to 
localize complete action instances through multiple parallel and complementary branch learning. Uncertainty Modeling [20] recently 
investigated frame inconsistency and modeled background frames as out-of-distribution samples, thereby achieving the separation 
of background and action. CoLA [21] introduced contrastive learning to refine the boundary fragment feature representation, thus 
reducing the interference caused by boundary fragments. Although CoLA achieved good results, it directly used contrast learning 
for hard snippet mining, which could lead to suboptimal results due to less significant positive samples for contrast learning. To 
address this issue, our method first separates action features from background features by separation learning to ensure the number 
of positive samples, and then refines the hard samples by contrast learning to obtain fine action localization. In summary, weakly 
supervised temporal action localization still relies on video-level action labels, and action category annotation for large amounts of 
untrimmed video is also very difficult and expensive [8].

2.3. Unsupervised action localization

An increasing number of recent research efforts have focused on the task of unsupervised temporal action localization because 
it does not rely on any video annotations. Unsupervised temporal action localization only requires the knowledge of the number of 
action classes. TCAM [9] proposed the first unsupervised action localization method, which was a two-step “clustering + localization” 
iterative procedure. TCAM first used a clustering algorithm to obtain action pseudo-labels, and then used the video-level features 
to locate action instances and update the action pseudo-labels of action instances via attention learning. Despite the progress 
achieved in unsupervised temporal action localization, TCAM used the overall video features for clustering and localization and 
obtained suboptimal results because the used features contain several negative information about the background. To address the 
limitation in TCAM, we propose APSL to select more salient action-positive features for boosting both clustering and localization 
in unsupervised temporal action localization. First, instead of conventional “clustering + localization” framework in TCAM, APSL 
follows a novel “feature separation + clustering + localization” iterative procedure. Using the untrimmed video input, we first 
introduce an easy-to-plug FSL module to extract the more salient action-positive feature and then apply the video-level clustering and 
clip-level temporal localization to obtain the action pseudo labels and action instance regions, respectively. During the procedure, 
more action-positive features are used for clustering and localization to obtain accurate action localization. Meanwhile, feature 
separation is improved. Second, to enable FSL to separate more salient action-positive features from difficult-to-locate information, 
two additional losses (i.e., the action-background separation loss and negative contrast loss) are proposed. Both learning mechanisms 
208

help APSL to obtain more precise video-level action categories and temporal-level action regions than TCAM.
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Fig. 2. The training pipeline of the APSL for unsupervised temporal action localization. Using the untrimmed video input, we apply the video-level clustering 
and clip-level temporal localization for respectively obtaining the action pseudo labels and action instance regions. Moreover, the APSL additionally introduces an 
easy-to-plug FSL with its losses to extract the more salient action-positive feature, to help obtain more accurate action clustering and localization.

2.4. Contrastive learning

As an important branch of deep metric learning [22], contrastive learning has recently made impressive progress in 
unsupervised/self-supervised visual representation learning. These approaches learned discriminative visual representations by 
contrasting positive pairs against negative ones. For example, SimCLR [23] proposed a negative sample selection scheme by using 
the augmented views of other items in a minibatch during training. MoCo [24] used a momentum updated memory bank of old 
negative representations to remove the batch size restriction and enable the consistent use of negative samples. In our work, we 
introduce contrastive learning into the FSL module for action-negative and background-negative feature segmentation, to remove 
potential difficult-to-locate information within the action and background features.

3. Methodology

In this section, we present the proposed APSL for unsupervised temporal action localization in detail. The overall APSL 
architecture is illustrated in Fig. 2. First, we apply the pre-trained I3D [25] with the input videos to extract and embed per-video 
task-specific spatio-temporal features. Second, we employ a video-level clustering module and clip-level temporal action localization 
module to achieve video-level pseudo-labels and temporal action regions. Meanwhile, a novel plug-and-play FSL module is introduced 
into the clustering and localization modules to identify and classify the spatio-temporal features of the video into four feature 
sub-spaces. In this way, clustering and localization modules can select the salient action-positive features (easy-to-locate) to enhance 
the clustering and localization performance. In the following sections, we will explain feature extraction and embedding, video-level 
clustering, clip-level temporal action localization, and FSL.

3.1. Feature extraction and embedding

Given an untrimmed video  , we first decompose it into a series of smaller non-overlapping sub-videos: i.e.,  = {𝑣𝑡}𝑘𝑡=1, where 
𝑣𝑡 represents the 𝑡-th sub-video and 𝑘 is the total number of sub-videos [26]. Each sub-video 𝑣𝑡 refers to an action clip that contains 
several adjacent frames of the video. All the clips have the same length. Then, we use a pre-trained feature extractor I3D [25]

to extract the per-clip RGB features as 𝑥𝑅𝐺𝐵
𝑡

∈ ℝ𝑑 , where 𝑑 is the tensor dimension. Meanwhile, we extract per-clip optical flow 
feature as 𝑥𝑓𝑙𝑜𝑤

𝑡
∈ ℝ𝑑 . Finally, we concatenate these two feature tensors to form the per-clip spatio-temporal feature tensor as 
209

𝑥𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑥𝑅𝐺𝐵
𝑡

, 𝑥𝑓𝑙𝑜𝑤
𝑡

). For the 𝑖 − 𝑡ℎ input video, we can obtain the video feature tensor as 𝑋𝑖 = [𝑥1, 𝑥2, ..., 𝑥𝑘] ∈ℝ2𝑑×𝑘 [27,28].
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Subsequently, we use a temporal convolutional operator and a ReLU [29] activation function, formally expressed as 𝐹𝑖 =
𝑔𝑒𝑚𝑏𝑒𝑑 (𝑋𝑖; 𝜙𝑒𝑚𝑏𝑒𝑑 ), to embed the extracted spatio-temporal features 𝑋𝑖 into the task-specific feature space, thereby obtaining the 
task-specific embedded features 𝐹𝑖 ∈ ℝ2𝑑×𝑘. 𝑔𝑒𝑚𝑏𝑒𝑑 (⋅) represents the temporal convolutional operator, and 𝜙𝑒𝑚𝑏𝑒𝑑 is the operator 
parameters. The final obtained task-specific embedded features 𝐹𝑖 have the same size as the input features 𝑋𝑖.

3.2. Video-level clustering

In the absence of any valid video-level supervised information, we introduce the spectral clustering algorithm [30,31] with the 
cluster-based triplet loss to cluster the input video into 𝐶 clusters, where 𝐶 is the number of action categories in the training set. 
Given that an untrimmed video usually contains a lot of background frames, the direct use of the video embedded features 𝐹𝑖 with the 
action-irrelevant information for clustering could lead to suboptimal results. Therefore, in this study, we employ an easy-to-plug FSL 
module (which will be described in section 3.4 below) to extract the action-positive features 𝐴𝑝

𝑖
. We also use 𝐴𝑝

𝑖
for the clustering to 

alleviate the influence of the action-irrelevant information. The detailed process of the video-level clustering is presented as follows.

Given the action-positive feature set {𝐴𝑝

𝑖
}𝑁
𝑖=1 of 𝑁 videos in the training set as input, we build a fully connected affinity graph 

𝐺 = {𝐴, 𝐸}, where 𝐴 is the set of graph vertexes, and 𝐸 is the set of its edges. Following the previous work [9], we first represent the 
action-positive feature of each video as a vertex in 𝐴. Then, we calculate the relation weight of any two vertexes, such as 𝐴𝑝

𝑥 and 𝐴𝑝
𝑦, 

as the edge of the graph. The edge is given by:

𝑒𝑥𝑦 = exp (−
‖𝐴𝑝

𝑥 −𝐴
𝑝
𝑦‖22

2𝜎2
),∀𝑒𝑥𝑦 ∈𝐸 (1)

where 𝜎 = 1
𝑁2

∑𝑁

𝑥=1
∑𝑁

𝑦=1‖𝐴𝑝
𝑥 − 𝐴

𝑝
𝑦‖2. ‖‖2 represents the Euclidean distance. The more similar the two vertexes are, the smaller the 

distance of the action-positive features will be, that is, the greater the weight of the relationship in Eq. (1) will be. A spectral 
clustering algorithm [30,31] is used to divide the 𝐺 into 𝐶 clusters with the constructed affinity graph 𝐺. Through such a clustering 
process, two vertices that are more similar are more likely to be grouped into a cluster. Finally, each cluster will be used to map 
a pseudo-action label and each video can be assigned with a pseudo-action label based on the clustering results. The pseudo-action 
label mapping can be seen in the section entitled “Pseudo label mapping”.

Cluster-based triplet loss. To produce more accurate pseudo-labels for action localization, we hope that the obtained clusters 
will have small intra-class spacing and large inter-class spacing. To this end, we introduce the cluster-based triple loss 𝐿𝑡𝑟𝑖𝑝 to pull 
the intra-class features of the same cluster closer and push the inter-class features of different clusters farther apart in the feature 
space. Formally, in a batch of 𝐾 training videos, we suppose that videos 𝑣𝑎 and 𝑣𝑐 are in cluster 𝑧, and their distance is the maximum 
intra-class distance of 𝑧; whereas the video 𝑣𝑏 is not in cluster 𝑧, and its inter-class distance with 𝑣𝑎 is the smallest. Thus, we represent 
their action-positive features as 𝐴𝑝

𝑎, 𝐴
𝑝

𝑏
, and 𝐴𝑝

𝑐 , respectively. Mathematically, the cluster-based triplet loss is given by:

𝐿𝑡𝑟𝑖𝑝 =
𝐶∑
𝑧=1

𝐾∑
𝑎=1

𝑚𝑎𝑥(𝑑𝑖𝑠(𝐴𝑝
𝑎
,𝐴𝑝

𝑐
) − 𝑑𝑖𝑠(𝐴𝑝

𝑎
,𝐴

𝑝

𝑏
) + ℎ,0) (2)

where 𝑑𝑖𝑠(, ) is the cosine distance. ℎ represents the positive margin that is used to reduce the sensitivity of noise to clustering. 
Through the cluster-based triplet loss, the clusters of the same category will be tighter, and clusters of different categories will be 
further away.

3.3. Clip-level temporal action localization

In this part, we further perform clip-level temporal action localization in a weakly supervised learning manner with the clustered 
pseudo-action labels. As shown in Fig. 2 (b), given the embedded features 𝐹𝑖 of the 𝑖-th video, we first use a liner classifier 𝑔𝑐𝑙𝑠 with 
a temporal convolution and a ReLU [29] activation function to predict the Class Activation Sequence (CAS):

𝑆𝑖 = 𝑔𝑐𝑙𝑠(𝐹𝑖;𝜙𝑐𝑙𝑠) (3)

where 𝑆𝑖 = {𝑠𝑖;𝑐}𝐶𝑐=1, and 𝑠𝑖∶𝑐 ∈ℝ1×𝑘 represents the CAS of the action class 𝑐. 𝐶 is the number of clustered action classes, and 𝑘 is the 
number of clips in the video. 𝜙𝑐𝑙𝑠 represents the learned parameters of the linear classifier.

Then, we aggregate the top 𝑙 scores of CAS for each action class and average them to obtain the per-action classification score:

𝑎𝑖;𝑐 =
1
𝑙
𝑚𝑎𝑥

∑
𝑙

𝑠𝑖;𝑐 (4)

where 𝑎𝑖;𝑐 is the classification score for the 𝑐-th action class. 𝑙 = ⌊ 𝑘
𝑟
⌋, where 𝑘 is the clip amount in the video, and 𝑟 is a hyperparameter 

that controls the ratio of the aggregated clips.

Multi-label classification loss. For optimization, we introduce multi-label classification loss 𝐿𝑐𝑙𝑠 to predict the multiple action 
classes for each video. Mathematically, we use the cross-entropy loss as 𝐿𝑐𝑙𝑠, which can be given by

1
𝑁∑ 𝐶∑
210

𝐿𝑐𝑙𝑠 = −
𝑁

𝑖=1 𝑐=1
𝑦𝑖;𝑐 log(𝑝𝑖;𝑐 ) (5)
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Fig. 3. The implementation pipeline of the FSL for effective feature separation.

where 𝑝𝑖;𝑐 =
exp (𝑎𝑖;𝑐 )∑𝐶
𝑗=1 exp (𝑎𝑖;𝑗 )

represents the predicted classification possibilities for the 𝑐-th class of the 𝑖-th video, and 𝑦𝑖;𝑐 is the generated 

video-level pseudo labels by the clustering.

Inference of action localization.

Given a video, we first calculate its CAS (i.e., 𝑆𝑖) and then predict the video-level action possibilities 𝑝𝑖;𝑐 . Next, we set the threshold 
𝜃𝑐𝑙𝑎𝑠𝑠 on 𝑝𝑖;𝑐 to discover all the action classes 𝑐 that satisfy 𝑝𝑖;𝑐 > 𝜃𝑐𝑙𝑎𝑠𝑠. For the retained action classes, we threshold its corresponding 
CAS with 𝜃𝑎𝑐𝑡 to obtain a set of localization proposals. Each proposal in a video has the form of (𝑏𝑐 , 𝑒𝑐 , 𝑐), where 𝑏𝑐 and 𝑒𝑐 denote 
the start and end times of the 𝑐-th action class, respectively; and 𝑐 is the predicted action class. Finally, we perform non-maximum 
suppression (NMS) [32] on all these clip proposals to remove duplicated proposals and achieve the final localization output.

3.4. Feature separation learning

Directly applying the aforementioned clustering and localization on raw videos can be suboptimal because of several potential, 
easily confused noises, and action-unrelated information within clips, thereby making it difficult to obtain robust action-related 
representation. To obtain more action-related information for action localization, some methods [21,33,34] introduced contrastive 
learning to locate the potential hard clips and refine their feature representation. However, the video contains many easy-to-locate 
clips that can greatly improve the efficiency of feature localization if they can be separated first. To this end, a FSL module boosts 
both clustering and localization to model the clip-based action-positive representation better by introducing the joint separation and 
contrast learning that can improve the encoding of action spatial-temporal information across clips. The implementation pipeline of 
the FSL is illustrated in Fig. 3.

The FSL first identifies and separates the action features from the background features (easy-to-locate) and then refines and 
removes action-negative and background-negative features (hard-to-locate) to obtain more robust action-positive information. FSL 
consists of two main steps (i.e., positive feature separation and negative feature removal, each of which is a plug-and-play module 
that is easy to implement).

Using per-action CAS 𝑠𝑖;𝑐 of the 𝑖-th video from the temporal action localization, which represents the degree of activation of each 
action in a video, we first utilize the summation of 𝑠𝑖;𝑐 along the action class amount and apply the Sigmoid function to obtain the 
actionness 𝑆́𝑖 ∈ℝ𝑘 as:

𝑆́𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(
∑
𝑐

𝑠𝑖;𝑐 ), (6)

where 𝑘 is the number of clips in a video. Then, the two following steps are used for feature separation and contrast learning.

3.4.1. Positive feature separation

We sort the actionness 𝑆́𝑖 and sample the features with the top-𝑘 and bottom-𝑘 actionness scores as the action-positive features 
𝐴
𝑝

𝑖
∈ℝ2𝑑×𝑘𝑝 and background-positive features 𝐵𝑝

𝑖
∈ℝ2𝑑×𝑘𝑝 , respectively. Mathematically, the sampling process is presented as follows:

𝐴
𝑝

𝑖
= {𝑓𝑖;𝑡 ∣ 𝑡 ∈ 𝑆𝑎𝑐𝑡

𝑖
, 𝑆𝑎𝑐𝑡

𝑖
= 𝑆𝐷𝐸𝑆𝐶

𝑖
[∶ 𝑘𝑝], 𝑓𝑖;𝑡 ∈ 𝐹𝑖} (7)

𝐵
𝑝

𝑖
= {𝑓𝑖;𝑡 ∣ 𝑡 ∈ 𝑆

𝑏𝑘𝑔

𝑖
,𝑆

𝑏𝑘𝑔

𝑖
= 𝑆𝐴𝑆𝐶

𝑖
[∶ 𝑘𝑝], 𝑓𝑖;𝑡 ∈ 𝐹𝑖} (8)

where 𝑆𝐷𝐸𝑆𝐶
𝑖

and 𝑆𝐴𝑆𝐶
𝑖

denote the index of 𝑆́𝑖 after sorting by descending and ascending order, respectively. 𝑘𝑝 =𝑚𝑎𝑥(1, ⌊ 𝑘

𝑟𝑝
⌋), and 

𝑟𝑝 is a hyperparameter that controls the ratio of the selected positive clips from a video.

Action-background separation loss. Inspired by the previous work [20], we observe that action clips usually have larger feature 
magnitudes than background clips in videos. Therefore, we introduce an action-background separation loss 𝐿𝑎𝑏𝑠 to ensure that the 
action-positive features 𝐴𝑝

𝑖
and background-positive features 𝐵𝑝

𝑖
are as far away as possible from each other in the feature space. 
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Mathematically, the 𝐿𝑎𝑏𝑠 can be written as:
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Fig. 4. The process of erosion and dilation for separating action-negative and background-negative clips from a sequence. (a) shows the process of subtracting the 
eroded sequences with different masks to obtain the action-positive clips. (b) shows the process of subtracting the dilated sequences with different masks to obtain 
the background-positive clips. Note: Yellow squares represent the action clips, green squares represent the background clips, gray squares represent the same part of 
the two sequences, pink squares represent the action-negative clips and blue squares represent the background-negative clips.

𝐿𝑎𝑏𝑠 =
1
𝑁

𝑁∑
𝑖=1

(𝑚𝑎𝑥(0, 𝑞 − ||𝐴𝑝

𝑖
||) + ||𝐵𝑝

𝑖
||)2 (9)

where || ⋅ || is a norm function. 𝑞 is a predefined maximum feature magnitude and is empirically set to 150. Through this learning 
process, the action and background features can be effectively separated in the feature space.

3.4.2. Negative feature removal

To remove potential difficult-to-locate information further within the action and background features, FSL introduces contrastive 
learning for action-negative and background-negative feature segmentation. We first binarize 𝑆́𝑖 to generate a binary sequence 𝑆𝑏𝑖𝑛

𝑖

as (1 and 0 represent the action and background, respectively):

𝑆𝑏𝑖𝑛
𝑖

= 𝜖(𝑆́𝑖 − 𝜃𝑏) (10)

where 𝜖(⋅) denotes the Heaviside step function, and 𝜃𝑏 represents the threshold value for the binarization. Then, we apply two 
cascaded erosion and dilation operations to narrow and expand 𝑆𝑏𝑖𝑛

𝑖
with two different temporal intervals, respectively. With the 

different regions of erosion and dilation, we calculate the action-negative clips 𝑅𝑎𝑐𝑡
𝑖

and background-negative clips 𝑅𝑏𝑘𝑔

𝑖
in a video 

as:

𝑅𝑎𝑐𝑡
𝑖

= (𝑆𝑏𝑖𝑛
𝑖

;𝑚)− − (𝑆𝑏𝑖𝑛
𝑖

;𝑀)− (11)

𝑅
𝑏𝑘𝑔

𝑖
= (𝑆𝑏𝑖𝑛

𝑖
;𝑀)+ − (𝑆𝑏𝑖𝑛

𝑖
;𝑚)+ (12)

where (−; ∗)− and (−; ∗)+ represent the erosion and dilation operations with the mask *, respectively. 𝑀 and 𝑚 represent larger 
and smaller masks, respectively. Fig. 4 illustrates the process of erosion and dilation operations for separating action-negative and 
background-negative clips from a sequence by narrowing and expanding the 𝑆𝑏𝑖𝑛

𝑖
, respectively. As shown in the figure, the erosion 

outputs the action clips when all clips in the mask neighborhood belong to the action clips (see the yellow), whereas the dilation 
outputs the action clips when one clip belongs to the action clips. More specifically, for the erosion operation, we use the larger 
mask 𝑀 and the smaller mask 𝑚 to erode the sequence 𝑆𝑏𝑖𝑛

𝑖
. The erosion of 𝑆𝑏𝑖𝑛

𝑖
with a larger mask 𝑀 corresponds to a strict 

selection as (𝑆𝑏𝑖𝑛
𝑖

, 𝑀)−, whereas the erosion of 𝑆𝑏𝑖𝑛
𝑖

with a smaller mask 𝑚 corresponds to a simple selection as (𝑆𝑏𝑖𝑛
𝑖

, 𝑚)−. The larger 
mask can obtain action clips with high confidence in erosion. Therefore, the difference between (𝑆𝑏𝑖𝑛

𝑖
, 𝑚)− and (𝑆𝑏𝑖𝑛

𝑖
, 𝑀)− is the 

action-negative clip on the boundary. Similarly, for the dilation operation, we use the larger mask 𝑀 and the smaller mask 𝑚 to 
dilate the sequence 𝑆𝑏𝑖𝑛

𝑖
, the dilation of 𝑆𝑏𝑖𝑛

𝑖
with a larger mask 𝑀 corresponds to a simple expansion of the action clips as (𝑆𝑏𝑖𝑛

𝑖
, 𝑀)+, 

whereas the dilation of 𝑆𝑏𝑖𝑛
𝑖

with a smaller mask 𝑚 corresponds to a strict expansion of the action clips as (𝑆𝑏𝑖𝑛
𝑖

, 𝑚)+. The smaller 
mask can obtain background clips with high confidence in dilation. Therefore, the difference between (𝑆𝑏𝑖𝑛

𝑖
, 𝑀)+ and (𝑆𝑏𝑖𝑛

𝑖
, 𝑚)+ is the 

background-negative clip on the boundary. The details of erosion and dilation operations can be seen in this work [35].

Next, similar to positive feature sampling, we select 𝑘𝑛 action-negative clips from 𝑅𝑎𝑐𝑡
𝑖

to form the action-negative features 
𝐴𝑛
𝑖
∈ ℝ2𝑑×𝑘𝑛 , where 𝑘𝑛 = 𝑚𝑎𝑥(1, ⌊ 𝑘

𝑟𝑛
⌋), and 𝑟𝑛 is a hyperparameter that controls the ratio of the selected negative clips in a video. 

Similarly, we can segment the background-negative features 𝐵𝑛
𝑖
∈ℝ2𝑑×𝑘𝑛 .

Negative contrast loss. For contrastive learning, we introduce the negative contrast loss 𝐿𝑐𝑜𝑛 for optimization. Specifically, 
taking the action-negative feature of the 𝑖-the video as an example, we take the mean operation for 𝐴𝑛

𝑖
and 𝐴𝑝

𝑖
to obtain the 𝐴𝑛

𝑖
∈ℝ2𝑑

and 𝐴𝑝

𝑖
∈ℝ2𝑑 , respectively, where 𝑑 is the dimension of the clip features. For 𝐴𝑛

𝑖
, we represent 𝐴𝑝

𝑖
as the positive sample and 𝐵𝑝

𝑖
as 

the negative sample. Similarly, for the background-negative features 𝐵𝑛
𝑖
, we also average the features 𝐵𝑛

𝑖
and 𝐵𝑝

𝑖
to obtain the mean 

feature 𝐵𝑛
𝑖
∈ℝ2𝑑 and 𝐵𝑝

𝑖
∈ℝ2𝑑 . We represent 𝐵𝑝

𝑖
as the positive sample and 𝐴𝑝

𝑖
as the negative sample. Following [24], we calculate 
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the distances between the features and their positive and negative samples according to the negative contrast loss 𝐿𝑐𝑜𝑛:
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𝐿𝑐𝑜𝑛 =
𝑁∑
𝑖=1

log[−
exp((𝐴𝑛

𝑖
)𝑇 ⋅𝐴𝑝

𝑖
∕𝜏)

exp((𝐴𝑛
𝑖
)𝑇 ⋅𝐴𝑝

𝑖
∕𝜏) +

∑𝑘𝑝

𝑡=1 exp((𝐴
𝑛
𝑖
)𝑇 ⋅ 𝑏𝑝

𝑖;𝑡∕𝜏)
]+

𝑁∑
𝑖=1

log[−
exp((𝐵𝑛

𝑖
)𝑇 ⋅𝐵𝑝

𝑖
∕𝜏)

exp((𝐵𝑛
𝑖
)𝑇 ⋅𝐵𝑝

𝑖
∕𝜏) +

∑𝑘𝑝

𝑡=1 exp((𝐵
𝑛
𝑖
)𝑇 ⋅ 𝑎𝑝

𝑖;𝑡∕𝜏)
]

(13)

where 𝜏 is a hyperparameter in contrastive learning. (𝐴𝑛
𝑖
)𝑇 and (𝐵𝑛

𝑖
)𝑇 are the transposes of 𝐴𝑛

𝑖
and 𝐵𝑛

𝑖
, respectively. 𝑏𝑝

𝑖;𝑡 ∈ 𝐵
𝑝

𝑖
and 

𝑎
𝑝

𝑖;𝑡 ∈ 𝐴
𝑝

𝑖
are the 𝑡-th elements of background-positive and action-positive features, respectively. 𝑘𝑝 is the number of elements in 𝐵𝑝

𝑖

and 𝐴𝑝

𝑖
.

3.5. Overall training objectives

In summary, the APSL has four objectives for optimization, namely, the multi-label classification loss 𝐿𝑐𝑙𝑠, the cluster-based triplet 
loss 𝐿𝑡𝑟𝑖𝑝, the action-background separation loss 𝐿𝑎𝑏𝑠, and the negative contrast loss 𝐿𝑐𝑜𝑛. Mathematically, the total loss corresponds 
the sum of these four losses and can be given by:

𝐿𝑡𝑜𝑡𝑎𝑙 =𝐿𝑐𝑙𝑠 + 𝛼 ⋅𝐿𝑡𝑟𝑖𝑝 + 𝛽 ⋅𝐿𝑎𝑏𝑠 + 𝛾 ⋅𝐿𝑐𝑜𝑛, (14)

where 𝛼, 𝛽, and 𝛾 are the hyper-parameters for better balancing the network learning. In this study, we empirically set 𝛼 = 0.005, 
𝛽 = 0.01, and 𝛾 = 0.005.

4. Experiments and analysis

4.1. Datasets

We evaluated the APSL on two large benchmark datasets: THUMOS’14 [36] and ActivityNet v1.2 [37]. Both datasets contain 
untrimmed videos, that is, some frames in the videos are not from any target action.

THUMOS’14. THUMOS’14 includes 13,320 untrimmed videos. The video duration is highly variable, and each video may contain 
multiple action instances. For a fair comparison, following the previous methods [38,39], we used 413 untrimmed videos with 20 
action classes in THUMOS’14, where 200 videos are from the validation set for training and 213 videos are from the test set for 
evaluation.

ActivityNet v1.2. ActivityNet v1.2 is a popular large benchmark action localization dataset that contains 4,819 training videos, 
2,383 validation videos, and 2,480 testing videos with 100 action classes. Following previous work [16], we trained our model on 
the training set and test on the validation set.

4.2. Implementation details

4.2.1. Feature extractor setting

Following previous methods [38,15,39,40], we used the pre-trained I3D [25] model on the Kinetics-400 [25] dataset to extract 
RGB and optical flow features. I3D took the non-overlapping clips of 16 stacked RGB or optical flow frames as input and extracted 
the 1024-dimensional feature for each stream. We adopted the fusion of the RGB and optical flow feature fed into APSL before to 
generate the final action localization.

4.2.2. Pseudo label mapping

By clustering, we obtained the 𝐶 clusters, but we only knew the cluster index to which each video belongs to. To make 
comparisons with other fully or weakly supervised methods, we must further map the cluster indices to action classes to obtain 
the class label. Considering that some videos may contain multiple action classes, we map each cluster to one or more action classes. 
We referred to the previous work TCAM [9] for the mapping process. First, suppose in cluster 𝑐, we counted the times of action class 
labels (note that the action class labels were only used when counting the times and were not involved in the training of the model). 
If 𝑦1 was the most frequently occurring action class and appears 𝑡 times, then we select the action class labels 𝑦𝑐 w.r.t its number of 
occurrences ≥ 𝑡

2 . As a result, the final action pseudo labels 𝑦𝑐 of the cluster 𝑐 can be mapped in a multi-label manner.

4.2.3. Key training parameters

The number of clips in a video 𝑘 was set to 750 and 50 for THUMOS’14 and ActivityNet v1.2, respectively. We utilized the Adam 
optimizer with a learning rate of 0.0001. For clarification, other key training parameters are shown in Table 1.

4.2.4. Testing details

For THUMOS’14 and ActivityNet v1.2, we set 𝜃𝑐𝑙𝑎𝑠𝑠 to 0.2 and 0.1 to determine which action classes are to be localized. We used 
multiple thresholds for proposal generation. For THUMOS’14, we set 𝜃𝑎𝑐𝑡 to [0.325:0.375:0.025]. For ActivityNet v1.2, we set 𝜃𝑎𝑐𝑡 to 
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[0:0.15:0.015] and then performed non-maximum suppression (NMS) using a threshold of 0.5.
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Table 1

The key training parameters involved in this work.

Parameters Description of the parameters Values

𝑑 Tensor dimension of each clip 1024

ℎ Positive margin in 𝐿𝑡𝑟𝑖𝑝 0.8

𝑟 The ratio of the aggregated clips 8

𝑟𝑝 The ratio of the selected positive clips 5

𝜃𝑏 Threshold value for binarization 0.8

𝑟𝑛 The ratio of the selected negative clips 20

𝑚 The smaller mask 3

𝑀 The larger mask 6

𝜏 The hyperparameter in contrastive learning 0.07

𝑞 Predefined maximum feature magnitude 150

Table 2

Comparison of action detection on the THUMOS’14 dataset. We denote fully supervised, weakly supervised and unsupervised 
as FS, WS and US, respectively. The best results are in bold.

Supervision Method
mAP@t-IoU (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

FS

S-CNN(2016) [11] 47.7 43.5 36.3 28.7 19 - - -

SSN(2017) [1] 66 59.4 51.9 41 29.8 - - -

TAL-Net(2018) [42] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1

GTAN(2019) [10] 69.1 63.7 57.8 47.2 38.8 - - -

TSI(2020) [6] - - 61.0 52.1 42.6 33.2 22.4 -

WS

Hide-and-Seek(2017) [18] 36.4 27.8 19.5 12.7 6.8 - - -

AutoLoc(2018) [16] - - 35.8 29 21.2 13.4 5.8 -

STPN(2018) [15] 52 44.7 35.5 25.8 16.9 9.9 4.3 27

W-TALC(2018) [17] 55.2 49.6 40.1 31.1 22.8 - 7.6 -

CMCS(2019) [38] 57.4 50.8 41.2 32.1 23.1 15 7 32.4

DGAM(2020) [39] 60 54.2 46.8 38.2 28.8 19.8 11.4 37

TCAM(2020) [9] - - 46.9 38.9 30.1 19.8 10.4 -

Bas-Net(2020) [43] 58.2 52.3 44.6 36 27 18.6 10.4 35.3

RefineLoc(2021) [44] - - 40.8 32.7 23.1 13.3 5.3 -

Liu et al.(2021) [45] - - 50.8 41.7 29.6 20.1 10.7 -

HAM-Net(2021) [19] 65.9 59.6 52.2 43.1 32.6 21.9 12.5 41.1

Uncertainty Modeling(2021) [20] 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9

CoLA(2021) [21] 66.2 59.5 51.5 41.9 32.2 22 13.1 40.9

D2-Net(2021) [7] 65.7 60.2 52.3 43.4 36 - - -

FAC-Net(2021) [46] 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2

ACGNet(2022) [47] 68.1 62.6 53.1 44.6 34.7 22.6 12 42.5

Ours 69.1 62.4 53.7 43.6 33.6 23.8 12.8 42.7

US
TCAM(2020) [9] - - 39.6 32.9 25 16.7 8.9 -

Ours 57.7 52.4 44.1 35.9 27.9 18.5 10 35.2

4.2.5. Evaluation metrics

We evaluated our method with mean Average Precision (mAP) under several different intersection over union (IoU) thresholds, 
which were the standard evaluation metrics for temporal action localization. Both datasets used the benchmark code provided by 
ActivityNet [37]. In addition, we employed the normalized mutual information (NMI) score and adjusted rand index (ARI) to measure 
the clustering performance, which have been widely used in clustering tasks [41].

4.3. Comparisons with state-of-the-arts

We compared our method with the existing fully supervised, weakly supervised, as well as unsupervised methods under several 
IoU thresholds. In the weakly supervised case, APSL only used the temporal action localization and FSL, thereby removing the 
video-level clustering because action category labels were known.

4.3.1. Evaluation on THUMOS’14 dataset

Table 2 summarizes the results of the THUMOS’14 test set when the IoU threshold varies between 0.1 and 0.7. For mAP@0.5, 
our method achieved 27.9% in the unsupervised case, which was a 2.9% improvement compared with TCAM. It indicated the 
effectiveness of FSL in unsupervised temporal action localization. In addition, for mAP@Avg, our unsupervised APSL method achieved 
35.2%, which was even better than the results of other state-of-the-art unsupervised methods. In the weakly supervised case, our 
method also achieved the best result of 42.7% on THUMOS’14, implying that the proposed FSL module is still valid for the weakly 
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supervised framework. In addition, we achieved good results on two widely used metrics in the evaluation of clustering, obtaining 
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Table 3

Comparison of action detection on the ActivityNet v1.2 dataset. We denote fully 
supervised, weakly supervised and unsupervised as FS, WS and US, respectively. The 
best results are in bold.

Supervision Method
mAP@t-IoU(%)

0.5 0.75 0.95 Avg

FS SSN(2017) [1] 41.3 27 6.1 26.6

WS

AutoLoc(2018) [16] 27.3 15.1 3.3 16.0

W-TALC(2018) [17] 37 12.7 1.5 18.0

CMCS(2019) [38] 36.8 22.9 5.6 22.4

RPN(2020) [48] 37.6 23.9 5.4 23.3

TSCN(2020) [49] 37.6 23.7 5.7 23.6

BaS-Net(2020) [43] 38.5 24.2 5.6 24.3

DGAM(2020) [39] 41 23.5 5.3 24.4

TCAM(2020) [9] 40 25 4.6 24.6

Uncertainty Modeling(2021) [19] 41.2 25.6 6 25.9

CoLA(2021) [21] 42.7 25.7 5.8 26.1

Ours 44.3 28.5 6.2 28.2

US
TCAM(2020) [9] 35.2 21.4 3.1 21.1

Ours 43.7 28.1 5.8 27.6

Table 4

Ablation study of different losses on the 
THUMOS’14 dataset. The best results are in 
bold.

Setting mAP@0.5(%)

Baseline(𝐿𝑐𝑙𝑠) 16.1

𝐿𝑐𝑙𝑠 +𝐿𝑎𝑏𝑠 25.8

𝐿𝑐𝑙𝑠 +𝐿𝑎𝑏𝑠 +𝐿𝑐𝑜𝑛 27.1

𝐿𝑐𝑙𝑠 +𝐿𝑎𝑏𝑠 +𝐿𝑐𝑜𝑛 +𝐿𝑡𝑟𝑖𝑝 27.9

0.821 on normalized mutual information score and 0.639 on adjust rand index, whereas TCAM only obtained 0.811 on normalized 
mutual information score and 0.612 on adjust rand index.

4.3.2. Evaluation on ActivityNet v1.2 dataset

The results on ActivityNet v1.2 are given in Table 3. Our method was compared with other state-of-the-art unsupervised, weakly 
supervised, and fully supervised action localization methods. As shown in the table, although without any annotation for videos, our 
method achieved a good result of 27.6% for mAP@Avg in the unsupervised case, which was even better than some unsupervised 
methods. In the weakly supervised case, our method improved the state-of-the-art method [21], achieving a mAP increase of 2.1% 
for mAP@Avg. Moreover, in the evaluation of clustering, we obtained 0.795 on normalized mutual information score and 0.574 on 
adjust rand index.

4.4. Ablation studies

4.4.1. Ablation study on different losses

To analyze the contribution of each loss, we performed ablation studies of losses on the THUMOS’14 dataset in the unsupervised 
case. The results are shown in Table 4. The baseline was set as the main pipeline only with multi-label classification loss 𝐿𝑐𝑙𝑠. By 
introducing 𝐿𝑎𝑏𝑠, the performance largely gained by 9.7% in mAP@0.5 partially because action-background separation loss 𝐿𝑎𝑏𝑠

can separate action and background very well. As shown in Table 4, the integration of the negative contrast loss 𝐿𝑐𝑜𝑛 improved the 
performance by 1.3%, and further addition of the cluster-based triplet loss 𝐿𝑡𝑟𝑖𝑝 resulted in an increase of 0.8%. Finally, we used all 
losses to train the action localization model and achieved the best result of 27.9% in mAP@0.5.

4.4.2. Ablation study on different features

Table 5 reports the experimental results evaluated using the different features used for clustering and localization in the 
unsupervised case. As shown in Table 5, the embedded features 𝐹𝑖, which contained 𝐴𝑝

𝑖
+ 𝐵

𝑝

𝑖
+ 𝐴𝑛

𝑖
+ 𝐵𝑛

𝑖
, gained the result of 

20.4% in mAP@0.5, thereby showing that the direct use of clip-level embedded features can bring additional noise within the 
clips for localization. Only using the action-negative 𝐴𝑛

𝑖
resulted in a decline in performance and obtained 15.2% in mAP@0.5, 

which indicated that 𝐴𝑛
𝑖

was a hard-to-locate features that contained fewer distinguished information for action localization. The 
integration of the action-positive 𝐴𝑝

𝑖
and action-negative 𝐴𝑛

𝑖
achieved 21.3% in mAP@0.5, thereby improving localization. This 
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result verified that the action-positive feature 𝐴𝑝

𝑖
can improve the clustering and localization well. Finally, the sole use of the 
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Table 5

Ablation studies of different features on the THUMOS’14 dataset. 
The best results are in bold.

Setting mAP@0.5(%)

Embedded features 𝐹𝑖 (𝐴
𝑝

𝑖
+𝐵

𝑝

𝑖
+𝐴𝑛

𝑖
+𝐵𝑛

𝑖
) 20.4

Action-negative 𝐴𝑛
𝑖

15.2

Action-positive 𝐴
𝑝

𝑖
+action-negative 𝐴𝑛

𝑖
21.3

Action-positive 𝐴
𝑝

𝑖
27.9

Fig. 5. Analysis of 𝑟𝑝 for the effect of positive clips on the THUMOS’14 dataset. We report the mAP@Avg with varying 𝑟𝑝 from 3 to 10.

Fig. 6. The influence of 𝑞 in the action-background separation loss on the THUMOS’14 dataset. We report the mAP@Avg with varying q from 100 to 200.

proposed action-positive features 𝐴𝑝

𝑖
achieved the best result of 27.9% in mAP@0.5, verifying that the separated action-positive 

features effectively removed the influence of negative non-action information via the joint separation and contrastive learning.

4.4.3. Analysis on 𝑟𝑝
𝑘𝑝 = 𝑚𝑎𝑥(1, ⌊ 𝑘

𝑟𝑝
⌋) determines the number of selected positive clips from a video, and 𝑟𝑝 is a hyperparameter that controls 𝑘𝑝. We 

investigated the effects of 𝑟𝑝 in Fig. 5, where 𝑟𝑝 was altered from 3 to 10. When 𝑟𝑝 was too small, more positive clips were selected, 
and the clips related to background information were also selected, thereby resulting in lower performance. Meanwhile, when 𝑟𝑝
was large, too fewer positive clips were selected, resulting in lower performance as well. In our experiments, the best results were 
obtained when 𝑟𝑝 was 5.

4.4.4. Effects of parameter 𝑞
In the action-background separation loss (Eq. (9)), 𝑞 is a hyperparameter that represents the maximum feature magnitude and is 

used to control the separation interface of action and background features. Fig. 6 presents the mAP@Avg of action localization with 
different 𝑞 in the separation loss. As shown in the figure, the mAP@Avg researched the highest 35.2% when we set the parameter 
𝑞 to 150. We observed that when 𝑞 was set relatively small, the separation of action-positive features and background-positive 
features was incomplete, resulting in degraded performance. On the contrary, when 𝑞 was large, the excessive separation of action 
and background led to overfitting of the model, thus resulting in performance degradation. In our experiments, the best result was 
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Table 6

“Only RGB” used only rgb features, “Only 
flow” used only flow features, “Early fusion” 
indicates that RGB and optical flow images 
are fused before inputting I3D network, and 
“Later fusion” indicates that RGB features 
and flow features are fused after output from 
I3D network. The best results are in bold.

feature fusion manner mAP@Avg(%)

Only RGB 21.5

Only flow 16.1

Early fusion 23.0

Later fusion 35.2

Table 7

Comparison of model complexity and efficiency.

Method Params(M) MACs(G) mAP@Avg(%)

Bas-Net 26.26 38.6 35.3

HAM-Net 29.15 21.86 41.1

Uncertainty Modeling 12.63 9.47 41.9

APSL 12.72 9.53 42.7

4.4.5. Effects of different feature fusion manners

To discuss the effects of different feature fusion manners for action localization, we used various feature fusion methods for RGB 
and optical flow features, and the results were shown in Table 6. “Only RGB” represents only using the extracted RGB features, “Only 
flow” represents only using the optical flow features, “Early fusion” indicates that RGB and optical flow images are fused before 
inputting I3D network, and “Later fusion” indicates that RGB features and flow features are fused after output from I3D network. 
The result of “Later fusion” is the best. The possible reason is that more detailed spatio-temporal information can be fully extracted 
for optical flow feature and RGB feature separately using the late fusion, and most of the current methods [38,15,39] use the later 
fusion of RGB and flow features.

4.5. Computational complexity

Table 7 reports the model parameters and computational cost of four temporal action localization methods in the weakly 
supervised case on the THUMOS’14 dataset. We use Multiply–Accumulate Operations (MACs)1 to measure the computational cost. 
APSL has the best performance (mAP@Avg of 42.7%) with less computational cost (9.53G) and parameters (12.72M) among the 
compared methods, demonstrating that the proposed method exhibits improved accuracy and efficiency.

4.6. Visualization and qualitative results

Fig. 7 shows several visualization results on THUMOS’14 in the weakly supervised case. Compared with Uncertainty Modeling 
[20], APSL accurately locates the action clips in untrimmed videos. Fig. 7 (a) is an example of the frequent action case with 
VolleyballSpiking, which makes the localization difficult due to several potential, easy-confused noises and action-unrelated 
information within clips. Nonetheless, by separating action-positive and background-positive features and by removing the negative 
features, APSL can accurately locate the action-negative clips. Fig. 7 (b) shows an example of the Billiards action. The Uncertainty 
Modeling fails to localize the action clips, whereas our APSL successfully identifies and locates the action-negative clips, even at the 
boundary locations where motion and background information are blurred (see the red dashed boxes in Fig. 7).

In addition, Fig. 8 shows some visualization results on THUMOS’14 in the unsupervised case. The baseline is the TCAM 
framework [9] with the embedded features 𝐹𝑖. Compared with the TCAM framework, our APSL accurately recognizes the action 
clip positions in untrimmed videos, without using any video-level annotations. Fig. 8 (a) is a case of the CliffDiving action. As shown 
in Fig. 8 (a), some background-negative clips are incorrectly identified as action clips by TCAM with 𝐹𝑖, which indicates that 𝐹𝑖
includes several potential, easy-confused noises and action-unrelated information within clips, thus enabling it to obtain suboptimal 
localization results. Fig. 8 (b) shows an example of the GolfSwing action, which is quite challenging, because the characteristics of 
the player preparing to swing (background-negative) and being swung (action-positive) have similarities, thereby making the model 
mislocalized. Nevertheless, our APSL can separate the action-positive features from background features well enough to obtain 
accurate action localization.

Fig. 9 shows the results of clustering visualization. We perform clustering on the ActivityNet v1.2 dataset and selected t-SNE 
[50] feature maps of nine categories for presentation. Fig. 9 (a) shows the feature maps of the embedded features 𝐹𝑖 whereas Fig. 9
217
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Fig. 7. Visualization results on THUMOS’14 in the weakly supervised case. The red dashed boxes show the unlocated action regions in the Uncertainty Modeling.

Fig. 8. Visualization results on THUMOS’14 in the unsupervised case. The red dashed boxes show the area where TCAM is mislocated.

(b) shows the feature maps of the proposed action-positive features 𝐴𝑝

𝑖
. The clustering that use 𝐴𝑝

𝑖
works better with each category 

being a compact cluster, whereas the clusters obtained using 𝐹𝑖 are looser. The red dashed ellipses in Fig. 9 (a) show that the 
use of 𝐹𝑖 clustering causes the Playing kickball category, Mixing drinks category and the Grooming horse category to not cluster 
effectively, because 𝐹𝑖 contains information about the background, thereby leading to loose clusters. Meanwhile, Fig. 9 (b) obtains 
better clustering results for these three classes, showing that the feature 𝐴𝑝

𝑖
only contains action information and effectively enhances 
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Fig. 9. The visualization results of clustering. The left figure shows the feature map of the video embedded features 𝐹𝑖 while the right figure shows the feature 
map of the action-positive feature 𝐴𝑝

𝑖
. The red dashed ellipses in (a) show the loosely clustered categories via 𝐹𝑖 while the blue dashed ellipses in (b) indicate the 

corresponding compact clusters.

5. Conclusion

In this work, we propose a novel APSL for unsupervised temporal action localization without any action annotations. APSL 
follows a novel “feature separation + clustering + localization” iterative procedure. The “clustering” clusters the features to obtain 
video-level action pseudo-labels, and the “localization” uses the pseudo-labels to locate the action temporal regions, while improving 
the clustering performance. Moreover, we introduce the FSL module to identify and separate salient action-positive features from the 
video embedded features, to improve clustering and localization. We performed extensive experiments on two widely used temporal 
action localization datasets, namely THUMOS’14 and ActivityNet v1.2, in weakly supervised and unsupervised settings. The APSL 
exhibited state-of-the-art performance (i.e., avg@mAP 35.2% and 27.6% in unsupervised setting, on THUMOS’14 and ActivityNet 
v1.2, respectively).

Despite the effectiveness of our method, some difficult problems that cause our APSL to not perform favorably are still observed. 
For example, in action localization, APSL only uses clips within the video for contrast learning to refine the action-negative and 
background-negative features, which results in a less abundant number of contrast learning samples and makes the contrast learning 
effect not optimal. Furthermore, APSL heavily depends on the performance of the clustering module, and poor clustering will lead 
to poor subsequent localization. The effective decoupling of the clustering and localization results is still a difficult problem. In 
the future, we will introduce contrast learning in clustering for coarse action localization and then continue to optimize the fine 
action positions by contrast learning in the localization phase to form a unified contrast-based clustering-localization paradigm, thus 
eliminating the effects of separating the clustering and localization phases.
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